
 
 

 
 

401, Shekhar Central, Palasia Square, Indore , MP - 452001 

 
 

Node, Express and MongoDB 

www"c$%&b&((&)"*+ 

-9/ 00123 45666 

-9/ 99929 10477 

 

Section 1 – NodeJS Modules 

 NodeJS Introduction , Architecture , Installation and Setup 
 Path Module 
 Url Module 
 FS Module 
 Http Module 
 Create Server App and apply routing. 
 Attach css and image in page 

 
*1. Explain the steps to install Node.js on your computer. Create a simple "Hello World" 

program and run it using Node.js. 

*2. Write a Node.js program that uses the `path` module to join and normalize file paths. 

Also, create a program that utilizes the `url` module to parse and manipulate URLs. 

*3. Develop a Node.js script to read a text file asynchronously using the `fs` module and 

display its contents. 

*4. Create a basic HTTP server using Node.js. When a client makes a request to the server, 

respond with "Hello, World!". 

*5. Expand on the previous HTTP server by implementing basic routing. Depending on the 

URL path, return different responses (e.g., "Welcome to Home Page" for '/', "About Us" for 

'/about', etc.). 

 
#1. Create Multiple Pages (Home , About and Services) and also attach images and boot- 

strap in it. Prepare Menu Bar for routing. 

#2. Enhance your server to handle POST requests. Create a form in HTML that sends data 

to the server, which then processes and displays it. 

#3. Modify your server to serve static HTML, CSS, and image files. When a user accesses 

'/style.css' or '/image.jpg', they should see the respective content. 

#4. Implement a logging system in your Node.js server. Log each incoming request along 

with a timestamp and the requested URL. 

#5. Extend your routing system to handle URL parameters. For example, create a route like 

'/user/:id' that displays user information based on the 'id' parameter. 

#6. Build a simple RESTful API using Node.js. Create endpoints for CRUD operations (e.g., 

GET, POST, PUT, DELETE) on a resource like "tasks" or "products". Test your API using 

tools like Postman or curl. 



 

Section 2 – Express and Routing 

 Express Introduction 
 Create Server via Express 
 EJS Introduction 
 Send Response from Express 
 Routing in Express 
 Handle Get, Post, Put and Delete Request Data 
 Path Variable in Express 
 Response json() function 
 Mail Sending 
 OTP Verfication 
 Payment Intergation 

 
*1. Take input 5 subjects marks and send Get request to server and show total , percent- 

age and grade in response page. 

*2. Set up an Express.js application on your local machine, and create a basic server that 

listens on port 3000. Test the server to ensure it's running. 

*3. Create an Express application that uses the EJS template engine to render a dynamic 

webpage. Pass data from the server to the template and display it. 

*4. Build an Express app with three different routes: '/home', '/about', and '/contact'. Each 

route should render a separate HTML page. 

*5. Implement an Express route that handles POST requests. Create a simple HTML form 

that allows users to submit data, and then display the submitted data on a new page. 

*6. Extend your Express app to handle PUT requests. Design a route that updates existing 

data, such as user information, based on an 'id' parameter. 

*7. Take employee income details such as basic salary , incentives , bonus and tax from 

user and send Post request to server and show off result on response page. 

 
#1. Patient Records Management Application with this menu : 

Home Add Patient Show Patient 

1. Add New Patient 
2. Show All Patient in Table 
3. Delete Patient 

 
Note : Data is stored in a JSON File. 

 
#2. Develop an Express route to handle DELETE requests. Define a route that removes 

data, such as user records, based on an 'id' parameter. 

#3. Build an Express API endpoint at '/api/users' that responds with a JSON array of user 

objects. Populate the JSON data with mock user data. 

#4. Implement a custom middleware function in your Express app. Log a message to the 

console for each incoming request. 

#5. Create an error-handling middleware in Express. Test it by intentionally triggering an 

error in one of your routes and ensuring that the error handler responds appropriately. 



Section 3 – Mysql Connectivity 

 Install Mysql2 Module 
 Mysql Connectivity 
 Perform CRUD Operation 

 
*1. Patient Records Management Application with this menu : 

Home Add Patient Show Patient 

1. Add New Patient 
2. Show All Patient in Table 

3. Delete Patient 
 

#1. Manage Multiple Students Exam Details via Mysql : 

Exam Details : RollNumber , Name , Branch , Physics , Chemistry , Maths 

 
Operations : 1. Add Exam Details 

2. Delete Exam 
3. Filter Exam Records Via Branch , 

Name and Roll Number 

 
Section 4. Sequelize 

 Sequelize Introduction 
 Sequelize Model and Creation 
 Sequelize Migration 
 CRUD Operation in Sequelize 
 Table Column Constraints and Validation 
 Association : One-To-One , One-To-Many , May-To-Many 
 Fetch Data from table 

 

*1. Create REST API for Patient Records Management Application. 

#1. Create REST API Manage Student CRUD. 
#2. Create Three Tables : 

 
Department 

departmentId , departmentName 
Employee 

empId , empName , empEmail , 
empDepartment , empSalary 

EmpSalary 
salId , employee , month , amount , bonus 

 
1. Add , Update and List Department Api 

2. Add , Update and List Employee Api 
3. Add and List Employee Salary Api 



 
Section 5. MongoDB 

 MongoDB Install 
 Create Database and Collection 
 Insert , Update and Delete Document 
 Delete Collection 
 Fetch Records from Collection 
 Install Mongoose Module 
 Mongoose Connectivity 
 Perform CRUD Operation 

 
*1. Patient Records Management Application Api: 

 
1. Add New Patient 
2. Show All Patient in Table 
3. Delete Patient 

 
Note : Data is stored in a Mongoose Table. 

 
 

#1. Manage Multiple Students Exam Details via MongoDB: 

Exam Details : RollNumber , Name , Branch , Physics , Chemistry , Maths 
 

Operations : 1. Add Exam Details 

2. Delete Exam 
3. Filter Exam Records Via Branch , 

Name and Roll Number 

 
Section 6. JWT , CORS and File Uploading 

 

 JWT Introduction 
 Setup JWT : Create Token , Parse Token 
 Create Token Parsing Middleware 
 Apply CORS 
 Uploading File into Server 

 
*1. Create a Node.js script that generates a JWT token. The token should include a user’s 

unique identifier and a custom claim (e.g., “role” with a value of “user”). After generating the 

token, print it to the console. 

*2. Develop an API endpoint that allows users to upload files (e.g., images) to your Node.js 

server. Describe how to handle file uploads, store them on the server, and provide a link to 

access the uploaded files. 

 
#1. Develop a Node.js script that verifies the authenticity of a given JWT token. You should 

provide a secret key used for signing the token. The script should take a token as input and 

verify whether it’s valid or not. If the token is valid, print a success message; otherwise, print 

an error message. 



#2. Implement functionality for users to download and manage their uploaded files. Create 

routes that list, download, and delete user-specific files stored on the server. 

 
Section 7. Mini Project 

 
College Project in which three users are there such as : 

 
1. Admin 

1. Login 
2. View Students 
3. View Faculty 
4. Block Any other User. 

2.Student 

1. Register and Login 
2. Update Profile 
3. Ask Question 

4. Download Files 
5. View Messages 

3.Faculty 
1. Register and Login 

2. Update Profile 
3. Solve Student Question 
4. Upload Files 
5. Send Messages 

 
Note : Using Sequelize and Mongoose 

 
Section 8. Minor Project 

 

 
1. ChatBuddy 

2. Emall 

3. Library 

4. CodeBetter Center Management 

 
Section 9. API Testing Tool 


