*1.
*2.
*3.
*4,

*5.
*6.
*7.

*8.
*9.

*10.

*11.
*12.

*13.

*14.
*15.
*16.
*17.
*18.
*109.
*20.

*21
*22

www.codebetter.in

{C}Od eBetter +91 88230 75444

Rise above the rest
401, Shekhar Central, Palasia Square, Indore, MP - 452001 +91 9993928766

Flutter APP Development

Operators, var, let, const, type Conversion
Control Statements (If else, switch,break,default)
Control Statements (loop's)

Intro to Function & types of function
User-define Function Local & global variables
Anonymous functions,Arrow Function.

List, Map, Set

Write a program that takes two numbers as input and displays their sum using the addition operator.

Write a program that swaps the values of two variable without using a temporary variable.

Write a program that checks if a given number is even or odd using the modulus operator (%).

Write a program that converts a string to a number and displays the result. For example, convert the string “42”
to the number 42.

Write a program that compares two strings and checks if they are equal using the equality (==) operator.

Write a program that checks if a given number is positive, negative, or zero using an if-else statements.

Write a program that prompts the user to enter a grade (A, B, C, D, or F) and displays a corresponding message
using a switch statement.

Write a program that finds the maximum of three numbers entered by the user using nested if-else statements.

Write a program that prompts the user to enter a number and displays whether it is prime or not using a loop and

if-else statements.

Write a program that converts a given month number (1-12) into its corresponding name (January — December)

using a switch statement.

Write a program that prints the numbers from 1 to 10 using a for loop.

Create a program that calculates the sum of all numbers from 1 to a given number entered by the user using a

while loop.

Write a program that prompts that user to enter a password and keeps asking until the correct password is

entered using a do-while loop.

Create a program that prints the multiplication table of a given number entered by the user using a for loop.

Write a program that finds the factorial of a given number using a for loop.

Write a Dart function that takes two integers as parameters and returns their sum.

Write a Dart function that checks if a number is even or odd and returns a corresponding message.

Create a Dart function that calculates the factorial of a given number using recursion.

Write a Dart function that checks if a given number is prime and returns a Boolean value.

Create a Dart function that generates a Fibonacci sequence up to a given number and returns a list.

. Write a Dart program that demonstrates the usage of a global variable.

. Write a Dart function that calculates the perimeter of a rectangle using local variables.


http://www.codebetter.in/

*23.
*24.
*25.
*26.
*27.
*28.
*29.
*30.
*31.
*32.
*33.
*34.

#1.
#2.

#3.
#4.
#5.
#6.

#71.

#8.
#9.

#10.

#11.

#12.

#13.
#14.

#15.
#16.
#17.
#18.
#19.
#20.
#21.
#22.
#23.
#24.
#25.
#26.

Write a Dart function that calculates the factorial of a given number using a local variable.

Write a Dart function that checks if a given number is prime using a local variable.

Write a Dart program that uses an anonymous function to calculate the square of a given number.
Write a Dart program that uses an anonymous function to filter even numbers from a list.

Write a Dart program that uses an anonymous function to convert a list of string to uppercase.
Write a Dart program that uses an arrow function to check if number is positive.

Write a Dart program that uses an arrow function to reverse a string.

Write a Dart program that creates a list of integers and prints the sum of all the numbers in the list.
Create a Dart program that adds elements to a list using the ‘add’ method and prints the updated list.
Create a Dart program that updates a value in a map using the key and prints the updated map.
Create a Dart program that sorts a list of integers in ascending order and prints the sorted list.
Create a Dart program that performs a union operation on two sets and prints the resulting set.

Create a program that calculates the area of a rectangle given its length and width using multiplication.

Create a program that converts a temperature in Celsius to Fahrenheit using the formula: Fahrenheit = (Celsius*
9/5) + 32.

Create a program that calculates the average of three numbers using the division and addition operators.

Create a program that calculates the area of circle given its radius using the mathematical constant pi.

Create a program that calculates the factorial of a given number using a loop and the multiplication operator.

Create a program that determines whether a year entered by the user is a leap year or not using an if-else
statement.

Create a program that simulates a simple calculator. Prompt the user to enter two numbers and an operator (+,-
.*, I, then perform the corresponding operation using a switch statement.

Create a program that checks if a given character is a vowel or a consonant using a switch statement.

Create a program that generates a random number between 1 and 10 and allows the user to guess it. Display a

message indicating if the guess is correct or not using an if-else statement.

Create a program that simulates a simple quiz. Ask the user a multiple-choice question and validate the answer

using if-else statements. Provide appropriate feedback based on the user’s response.

Create a program that prints the Fibonacci sequence up to a given number entered by the user using a while

loop.

Write a program that prompts the user to enter a series of numbers and finds the maximum among them using a

for loop.

Create a program that checks if a given number is prime or not using a for loop.

Write a program that generates a random number between 1 and 100 and allows the user to guess it. Provide

appropriate feedback and keep asking until the correct guess is made using a do-while loop.

Create a program that prints the ASCII values of all uppercase letters from A to Z using a for loop.

Create a Dart function that calculates the area of a rectangle given its length and width, and returns the result.

Write a Dart function that converts a temperature in Celsius to Fahrenheit and returns the result.

Create a Dart function that checks if a given string is a palindrome and returns a Boolean value.

Write a Dart function that calculates the sum of all numbers in a list and returns the result.

Create a Dart function that counts the number of vowels in a given string and returns the count.

Create a Dart program that shows the difference between local and global variable.

Create a Dart program that demonstrates the usage of a local variable inside a loop.

Create a Dart program that demonstrates the scope of local variable.

Create a Dart program that demonstrates the shadowing of local variables.

Create a Dart program that uses an anonymous function to find the sum of two numbers.

Create a Dart program that uses an anonymous function to find the maximum number in a list.



#27. Create a Dart program that uses an arrow function to calculate the area of a rectangle.

#28. Create a Dart program that uses an arrow function to calculate the sum of a list of a numbers.

#29. Create a Dart program that uses an arrow function to calculate the square root of a number.

#30. Create a Dart program that creates a map representing a person with keys “name”, “age”, and “city”. Print the
values of the map.

#31. Write a Dart program that removes an element from a list using the ‘remove’ method and prints the updated
list.

#32. Write a Dart program that checks if an element exists in a set using the ‘contains’ method and prints the result.

#33. Write a Dart program that retrieves all keys from a map and prints them.
#34. Write a Dart program that creates a set of strings and prints the number of unigue elements in the set.

- Object Oriented Programming

- Obiject,Class, Methods,Access specifiers

- Constructor, named constructor, this, static

- Inheritance - single, multilevel, hierarchical,Multiple

- Runtime Polymorphism, Method overriding, super keyword
- Abstraction, Abstract Class, Interface

- Packages

- Exception Handling

- Multithreading, Isolets, Async, Concurrency.

*1. Write a Dart program that creates a class called ‘Person’ with properties ‘name’ and ‘age’. Implement
a default constructor and a named constructor.

*2. Write a Dart program that demonstrates the usage of static variables and methods in a class.

*3. Write a Dart program that demonstrates the concept of constructor chaining using the “this’ keyword.

*4. Write a Dart program that demonstrates the usage of default parameter values in a constructor.

*5. Write a Dart program that demonstrates the usage of the “assert’ keyword in a constructor.

*6. Write a Dart program that demonstrates single inheritance by creating a base class ‘Animal’ and a
derived class ‘Cat’.

*7. Write a Dart program that demonstrates hierarchical inheritance by creating a base class ‘Shape’ and
two derived classes ‘Rectangle’ and ‘Circle’.

*8. Write a Dart program that demonstrates method overriding in inheritance.

*9. Write a Dart program that demonstrates the concept of abstract classes and methods in inheritance.

*10.Write a Dart program that demonstrates the usage of mixins inheritance.

*11.Write a Dart program that demonstrates method overriding and runtime ploymorphism

*12.Write a Dart program that demonstrates the concept of runtime polumorphism by having a list of
animals and calling the ‘makeSound()’ method for each animal.

*13. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base
class and its subclasses.

*14. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base
class and its subclasses implementing an interface.

*15. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base
class and its subclasses having different parameterized constructors.

*16. Write a Dart program that demonstrate abstraction and abstract classes.

*17. Write a Dart program that demonstrate the concept of abstraction and abstract classes with abstract
methods.



*18. Write a Dart program that demonstrates abstraction and abstract classes with named constructors.

*19. Write a Dart program that demonstrates the usage of abstract classes and interfaces in a hierarchical
structure.

*20. Write a Dart program that demonstrates abstraction and abstract classes with static members.

*21. Write a Dart program that uses the ‘http’ package to make an HTTP GET request and fetch data
from a remote server.

*22. Write a Dart program that uses the ‘path’ package to manipulate file and directory paths.

*23. Write a Dart program that uses the ‘flutter_launcher_icons’ package to generate app launcher icons
for a flutter project.

*24. Write a Dart program that uses the ‘flutter localizations’ package to add internationalization
support to a Flutter app.

*25. Write a Dart program that uses the ‘connectivity’ package to check the internet connectivity status in
a Flutter app.

*26. Write a Dart program that demonstrates the use of try-catch blocks to handle a specific exception.

*27. Write a Dart program that uses the ‘on’ keyword to catch specific exceptions.

*28. Write a Dart program that uses the “finally’ block to perform cleanup operations.

*29. Write a Dart program that demonstrates the use of the finally’ block with a return statement.

*30. Write a Dart program that demonstrates the use of stack traces to debug exceptions.

*31. Write a Dart program that uses the ‘async’ and ‘await’ keywords to perform an asynchronous
operation.

*32. Write a Dart program that uses isolates to perform computationally intensive tasks in parallel.

*33. Write a Dart program that uses the ‘Stream’ class to handle a stream of data asynchronously.

*34. Write a Dart program that uses the ‘await for’ loop to iterate over a stream of data asynchronously.

*35. Write a Dart program that uses the ‘StreamTransformer’ class to perform and filter a stream of
data.

#1. Create a Dart program that uses the ‘this’ keyword to refer to the current instance of a class.

#2. Create a Dart program that initialize an object using a static factory method.

#3. Create a Dart program that uses a private constructor to restrict the instantiation of a class.

#4. Create a Dart program that demonstrates the usage of constant constructors.

#5. Create a Dart program that demonstrates the usage of the ‘required’ keyword in a constructor.

#6. Create a Dart program that demonstrates multilevel inheritance by creating a base class ‘Animal’ an
intermediate class ‘Mammal’ and a derived class ‘Cat’.

#7. Create a Dart program that demonstrates multiple inheritance using interfaces by creating two classes
‘Flyer’ and ‘Swimmer’ implementing the interface ‘Animal’.

#8. Create a Dart program that demonstrates the usage of the ‘super’ keyword to call the base class
method.

#9. Create a Dart program that demonstrates the usage of the ‘is” and “as’ keywords for type checking and
type casting in inheritance.

#10. Create a Dart program that demonstrates the usage of abstract classes and multiple inheritance using
interfaces.

#11. Create a Dart program that demonstrates the usage of the ‘super’ keyword to call the base class
method.

#12. Create a Dart program that demonstrates method overriding and runtime polymorphism with a
parameterized method.

#13. Create a Dart program that demonstrates the usage of the ‘super’ keyword with parameters in a
method override.

#14. Create a Dart program that demonstrates runtime polymorphism with a base class and its subclasses
implementing multiple interfaces.

#15. Create a Dart program that demonstrates the usage of the ‘super’ keyword with named constructors
in method overriding.



#16. Create a Dart program that demonstrate abstraction and interfaces.

#17. Create a Dart program that demonstrate abstraction and interfaces with multiple inheritance.

#18. Create a Dart program that demonstrates abstraction and interfaces with default implementations.

#19. Create a Dart program that demonstrates abstraction and interfaces with getters and setters.

#20. Create a Dart program that demonstrates abstraction and interfaces with private members.

#21. Create a Dart program that uses the ‘int1’ package to format a date and time according to a specific
locale.

#22. Create a Dart program that uses the ‘shared_preferences’ package to persist data locally on the
device.

#23. Create a Dart program that uses the ‘firebase_core’ package to initialize Firebase in a Flutter project.

#24. Create a Dart program that uses the ‘flutter_svg’ package to display SVG images in a Flutter app.

#25. Create a Dart program that uses the “sqflite’ package to perform SQL.ite database operation in a
Flutter app.

#26. Create a Dart program that uses try-catch-finally blocks to handle exceptions and ensure cleanup of
resources.

#27. Create a Dart program that demonstrates the use of the ‘rethrow’ keyword to rethrow an exception.

#28. Create a Dart program that demonstrates the use of custom exceptions.

#29. Create a Dart program that uses the ‘on’ keyword to catch multiple exceptions.

#30. Create a Dart program that uses the “assert’ function to validate inputs and detect logical errors.

#31. Create a Dart program that uses the ‘Future’ class to handle a long-running computation
asynchronously.

#32. Create a Dart program that demonstrates the use of ‘Future.wait’ to perform multiple asynchronous
operations concurrently.

#33. Create a Dart program that demonstrates the use of ‘StreamController’ to create and control a
stream of data.

#34. Create a Dart program that demonstrates the use of ‘Completer’ to handle a future result
asynchronously.

- Intro to Mobile Ul & Mobile Programming(Backend)
- Flutter Architecture
- Intro to widgets(stateless & statefull)
- Intro to layouts,types(Widget supporting a single child,Widget supporting a multiple child)
- Material Widgets(TextField,ButtonBar,Checkbox) with
properites(Height, Width,padding,etc...)
- Material Widgets (ListTile,FloatingActionButton,FlatButton,lconButton,etc..)
- Async,await
- Gestures (Touch based device)
- Animation, Menu, Gallery, Camera
- Navigaton & Routing
- state Management (Like login,SignUp,etc...)

*1. Create a Dart program that displays a simple mobile Ul with buttons and text fields.

*2. Implement a Dart program that retrieves data from a remote server using HT TP requests and displays
it in a mobile app.

*3. Create a Dart program that uses local storage to store and retrieve data persistently in a mobile app.

*4. Implement a Dart program that communicates with a RESTful API to fetch and display data in a



mobile app.

*5. Create a Dart program that implements a real-time chat functionality using WebSocket communication
in a mobile app.

*6. Implement the BLOC (Business Logic Component) pattern in Flutter to manage the state of a simple
counter app.

*7. Develop a Flutter app that uses the MVVM (Model-View-ViewModel) architecture to separate the
business logic and presentation logic.

*8. Implement the Clean Architecture in a Flutter app by separating the app into layers and defining clear
boundaries between the presentation layer, domain layer, and data layer.

*9. Develop a Flutter app that follow the Flutter Modular architecture and uses modules to organize the
app into smaller, reusable components.

*10. Implement the MVP (Model-View-Presenter) architecture in a Flutter app, separating the logic of the
app into distinct layers and improving testability.

*11. Create a Flutter app with a stateless widget that displays a static text message.

*12. Build a Flutter app with a stateful widget that displays a list of items fetched from an API.

*13. Create a Flutter app with a stateless widget that displays a random quote every time the screen is
refreshed.

*14. Build a Flutter app with a stateful widget that fetches data from an API periodically and displays it on
the screen.

*15. Create a Flutter app with a stateful widget that validates user input in a form and displays appropriate
error message.

*16. Create a Flutter app with a ‘Container’ widget that contains a single child widget and applies custom
styling properties like color and padding.

*17. Build a Flutter app with a ‘Column’ widget that displays multiple child widgets vertically.

*18. Create a Flutter app with a ‘ListView’ widget that displays a scrollable list of child widgets.

*19. Build a Flutter app with a ‘Wrap’ widget that arranges multiple child widgets to the next line when
there’s not enough horizontal space.

*20. Create a Flutter app with a ‘Card’ widget that displays multiple child widgets within a

*21. Create a Flutter app with a ‘TextField” widget that allows the user to input text and displays the
entered text on a button press.

*22. Build a Flutter app with a ‘Checkbox’ widget that allows the user to toggle a value and displays the
current state.

*23. Create a Flutter app with a ‘ButtonBar’ widget that has a specified height, width, and padding.

*24. Develop a Flutter app with a ‘Scaffold’ widget that displays an ‘AppBar’ and a simple body.

*25. Build a Flutter app with a ‘TabBar’ and ‘TabBarView’ widget that displays different content based
on the selected tab.

*26. Create a Flutter app with a ‘BottomNavigationBar’ that includes badges on the icons.

*27. Create a Flutter app with a ‘ListTile’ widget that displays a title and subtitle.

*28. Build a Flutter app with a ‘FlatButton’ that changes its color when pressed.

*29. Create a Flutter app with a ‘RaisedButton’ that shows a snackbar when pressed.

*30. Create a Dart function that simulates an asynchronous task using ‘async’ and ‘await’.

*31. Build a Dart function that reads a file asynchronously using ‘async’ and ‘await’.

*32. Create a Dart function that performs an asynchronously operation with error handling using ‘try-
catch’ and ‘async’/’await’,

*33. Implement a Dart function that executes a series of asynchronous tasks sequentially using ‘async’
and ‘await’.

*34. Create a Dart function that performs an asynchronous task with a timeout using ‘async’ and ‘await’.

*35. Create a Flutter app that detects a tap gesture on a specific widget and performs an action.

*36. Build a Flutter app that detects a swipe gesture in different directions and displays the direction in a
text widget.

*37. Create a Flutter app that detects a pinch gesture and scales an image widget.



*38.
*39.
*40.
*41.
*42.
*43.
*44.
*45.
*46.
*47.
*48.
*49.
*50.
*51.
*52.
*53.
*54.

#1.

#2.

#3.

#4.

#5.

#6.

#1.

#8.

#9.

#10

#11
#12

#13.

#14
#15
#16
#17

#18
#19

Build a Flutter app that defects a scale gesture and zooms in/out an image.

Create a Flutter app that detects a force press gesture and displays the pressure level.
Create a Flutter app with a bouncing animation effect.

Create a Flutter app that displays a gallery of images.

Implement a Flutter app with an animated menu.

Develop a Flutter app with a circular menu.

Create a Flutter app with a gallery using a PageView.

Create a Flutter app with two screens and navigate between them.

Create a Flutter app with a bottom navigation bar.

Create a Flutter app with a drawer menu.

Develop a Flutter app with a bottom navigation bar and different screens for each tab.
Implement a Flutter app with a named route and passing arguments.

Implement a simple login form with state management.

Implement a signup form using BLoC pattern for state management.

Implement a theme toggle using Riverpod for state management.

Implement a timer app using Provider for state management.

Implement a user profile screen using BLoC pattern for state management.

Develop a Dart program that retrieves data from a remote server using HTTP requests and displays it
in a mobile app.

Build a Dart program that uses geolocation services to fetch the current location of a user’s mobile
device.

Develop a Dart program that integrates with the device’s camera to capture photos and display them in
a mobile app.

Build a Dart program that utilize Firebase Cloud Messaging to send push notifications to a mobile
device.

Develop a Dart program that utilizes the device’s accelerometer to detect motion and perform actions
in a mobile app.

Create a Flutter app that follows the Provider pattern to manage global state and demonstrate how to
access and update the state from different widgets.

Build a Flutter app that implements the redux architecture for state management and demonstrates how
to dispatch actions and handle state changes.

Create a flutter app that uses the Repository pattern to handle data access and provides an abstraction
layer between the data sources and the rest of the app.

Build a Flutter app that uses the Provider and Riverpod libraries to implement dependency injection
and manage dependencies between different parts of the app.

. Create a flutter app that uses the Flutter Hooks package to implement a functional programming style
and manage state in a more concise and declarative way.

. Develop a Flutter app with a stateful widget that increments a counter when a button is pressed.

. Implement a Flutter app with a stateful widget that toggles the visibility of a widget when a button is

pressed.

Develop a Flutter app with a stateful widget that fetches data from an API periodically and displays it

on the screen.

. Implement a Flutter app with a stateful widget that loads and displays images from the internet.

. Develop a Flutter app with a stateful widget that uses a timer to update the Ul periodically.

. Develop a Flutter app with a ‘Row’ widget that displays multiple child widgets horizontally.

. Implement a Flutter app with a ‘Stack’ widget that overlays multiple child widgets on top of each
other.

. Develop a Flutter app with a ‘GridView’ widget that arranges multiple child widgets in a grid layout.

. Implement a Flutter app with an ‘Expanded’ widget that distributes available space evenly among
multiple child widgets.



#20. Develop a Flutter app with a ‘Table’ widget that arranges multiple child widgets in a tabular layout
with rows and columns.

#21. Develop a Flutter app with a ‘ButtonBar’ widget that displays a row of buttons with custom padding
and alignment.

#22. Implement a Flutter app with a ‘TextField’ widget that has a specified height, width, and padding.

#23. Develop a Flutter app with a ‘Checkbox’ widget that has a specified height, width, and padding.

#24. Develop a Flutter app with a ‘BottomNavigateBar’ widget that switches between different screens.

#25. Implement a Flutter app with a ‘Scaffold’ widget that includes a ‘FloatingActionButton’.

#26. Develop a Flutter app with a ‘TopBar’ and ‘TabBarView’ that includes custom colors and styling.

#27. Develop a Flutter app with a ‘FloatingActionButton’ that performs an action when pressed.

#28. Implement a Flutter app with an ‘IconButton’ that shows a dialog when pressed.

#29. Develop a Flutter app with a ‘Card’ widget that displays an image and some text.

#30. Develop a Dart program that fetches data from an API using ‘async’ and ‘await’.

#31. Implement a Dart program that performs multiple asynchronous tasks concurrently using ‘async’ and
‘await’.

#32. Develop a Dart program that performs a time-consuming calculation asynchronously using ‘async’
and ‘await’.

#33. Develop a Dart program that fetches data from multiple APIs concurrently using ‘async’ and ‘await’.

#34. Implements a Dart program that performs an asynchronous operation with progress updates using
‘Stream’ and ‘async’/’await’.

#35. Develop a Flutter app that detects a long press gesture and displays a dialog.

#36. Implement a Flutter app that detects a double tap gesture and changes the color of a widget.

#37. Develop a Flutter app that detects a vertical drag gesture and scrolls list.

#38. Implement a Flutter app that defects a long press move gesture and drags an object on the screen.

#39. Develop a Flutter app that detects a rotate gesture and rotates an image.

#40. Implement a Flutter app with a dropdown menu.

#41. Develop a Flutter app that accesses the camera and captures an image.

#42. Create a Flutter app with a sliding menu.

#43. Implement a Flutter app with a tab bar.

#44. Develop a Flutter app with a camera preview.

#45. Implement a Flutter app with named routes and passing data between screens.

#46. Develop a Flutter app with a tab-based navigation.

#47. Implement a Flutter app with a login screen and navigate to the home screen on successful login.

#48. Create a Flutter app with a bottom navigation bar and persistent state between screens.

#49. Create a Flutter app with a drawer menu and navigate to different screens.

#50. Implement a counter app using Provider for state management.

#51. Implement a shopping cart using MobX for state management.

#52.Implement a todo list using GetX for state management.

#53. Implement a weather app using Riverpod for state management.

#54. Implement a favorites list using MobX for state management.

- Create SQlite Based Project

- APl Using Postman (GET,POST,PUT,DELETE,etc..)
- Rest API Use in Application

- OTP Verification

- Login with Gmail

- Firebase Remote Notification

- Payment Integration



*1.

*2.

*3.
*4.

*5.

*6.

*7.

*8.

*9.

Create a Flutter application that stores and retrieves user information (name, email, age) in a SQL.ite
database.

Use the ‘http’ package in Dart to make a GET request to a public API (e.g., weather API) and display
the response data in your application.

Build a Flutter app that consumes a Restful API to fetch and display a list of products.

Create a Dart program that generates a random OTP and sends it to a user’s phone number or email
using an external service (e.g., Twilio, SendGrid).

Integrate the Google Sign-In API in your Flutter app to allow users to log in using their Gmail
accounts.

Set up Firebase Cloud Messaging (FCM) in your Flutter app to send remote push notifications to the
device.

Integrate a payment gateway SDK (such as Stripe or PayPal) into your Dart application to enable
online payment processing.

Implement JWT (JSON Web Tokens) authentication in your Dart app to secure your Restful API
endpoints.

Create a Flutter app with a login/register screen using Firebase Authentication.

*10. Use Firebase Real-time Database in your Dart app to synchronize data across multiple devices in real

#1.
#2.
#3.
#4.
#5.
#6.
#1.

#8.
#9.

— time.

Implement CRUD (Create, Read, Update, and Delete) operations on the user data using SQL.ite.
Implement a POST request to send data to a server (e.g., user registration) using the ‘http’ package.
Implement pagination functionality in your app by making subsequent requests to retrieve additional
data from the API.

Implement OTP verification by comparing the entered OTP with the generated OTP in your Dart
application.

Retrieve the user’s basic profile information (name, email, profile picture) after successful
authentication.

Implement handling of incoming push notifications and display them as system notifications or within
the app.

Implement a checkout flow where users can enter payment details and complete a purchase using the
integrated payment gateway.

Validate and decode JWT tokens received from the client to authenticate and authorize requests.
Implement different user roles (e.g. admin, regular user) and restrict access to certain features based on
the user’s role.

#10. Implement real-time chat functionality where messages sent from one device are instantly visible on

other devices.



