

Flutter APP Development

Section 1 – Dart Programming

www.codebetter.in

+91 88230 75444

 4 0 1 , S h e k h a r C e n t r a l , P a la s ia S q u a re , I n d o r e , M P - 4 5 2 0 0 1 +91 9993928766

- Operators, var, let, const, type Conversion

- Control Statements (If else, switch,break,default)

- Control Statements (loop's)
- Intro to Function & types of function

- User-define Function Local & global variables

- Anonymous functions,Arrow Function.

- List, Map, Set

*1. Write a program that takes two numbers as input and displays their sum using the addition operator.

*2. Write a program that swaps the values of two variable without using a temporary variable.

*3. Write a program that checks if a given number is even or odd using the modulus operator (%).

*4. Write a program that converts a string to a number and displays the result. For example, convert the string “42”

to the number 42.

*5. Write a program that compares two strings and checks if they are equal using the equality (==) operator.

*6. Write a program that checks if a given number is positive, negative, or zero using an if-else statements.

*7. Write a program that prompts the user to enter a grade (A, B, C, D, or F) and displays a corresponding message

using a switch statement.

*8. Write a program that finds the maximum of three numbers entered by the user using nested if-else statements.

*9. Write a program that prompts the user to enter a number and displays whether it is prime or not using a loop and

if-else statements.

*10. Write a program that converts a given month number (1-12) into its corresponding name (January – December)

using a switch statement.

*11. Write a program that prints the numbers from 1 to 10 using a for loop.

*12. Create a program that calculates the sum of all numbers from 1 to a given number entered by the user using a

while loop.

*13. Write a program that prompts that user to enter a password and keeps asking until the correct password is

entered using a do-while loop.

*14. Create a program that prints the multiplication table of a given number entered by the user using a for loop.

*15. Write a program that finds the factorial of a given number using a for loop.

*16. Write a Dart function that takes two integers as parameters and returns their sum.

*17. Write a Dart function that checks if a number is even or odd and returns a corresponding message.

*18. Create a Dart function that calculates the factorial of a given number using recursion.

*19. Write a Dart function that checks if a given number is prime and returns a Boolean value.

*20. Create a Dart function that generates a Fibonacci sequence up to a given number and returns a list.

*21. Write a Dart program that demonstrates the usage of a global variable.

*22. Write a Dart function that calculates the perimeter of a rectangle using local variables.

http://www.codebetter.in/

*23. Write a Dart function that calculates the factorial of a given number using a local variable.

*24. Write a Dart function that checks if a given number is prime using a local variable.

*25. Write a Dart program that uses an anonymous function to calculate the square of a given number.

*26. Write a Dart program that uses an anonymous function to filter even numbers from a list.

*27. Write a Dart program that uses an anonymous function to convert a list of string to uppercase.

*28. Write a Dart program that uses an arrow function to check if number is positive.

*29. Write a Dart program that uses an arrow function to reverse a string.

*30. Write a Dart program that creates a list of integers and prints the sum of all the numbers in the list.

*31. Create a Dart program that adds elements to a list using the ‘add’ method and prints the updated list.

*32. Create a Dart program that updates a value in a map using the key and prints the updated map.

*33. Create a Dart program that sorts a list of integers in ascending order and prints the sorted list.

*34. Create a Dart program that performs a union operation on two sets and prints the resulting set.

#1. Create a program that calculates the area of a rectangle given its length and width using multiplication.

#2. Create a program that converts a temperature in Celsius to Fahrenheit using the formula: Fahrenheit = (Celsius*

9/5) + 32.

#3. Create a program that calculates the average of three numbers using the division and addition operators.

#4. Create a program that calculates the area of circle given its radius using the mathematical constant pi.

#5. Create a program that calculates the factorial of a given number using a loop and the multiplication operator.

#6. Create a program that determines whether a year entered by the user is a leap year or not using an if-else

statement.

#7. Create a program that simulates a simple calculator. Prompt the user to enter two numbers and an operator (+,-

,*, /), then perform the corresponding operation using a switch statement.

#8. Create a program that checks if a given character is a vowel or a consonant using a switch statement.

#9. Create a program that generates a random number between 1 and 10 and allows the user to guess it. Display a

message indicating if the guess is correct or not using an if-else statement.

#10. Create a program that simulates a simple quiz. Ask the user a multiple-choice question and validate the answer

using if-else statements. Provide appropriate feedback based on the user’s response.

#11. Create a program that prints the Fibonacci sequence up to a given number entered by the user using a while

loop.

#12. Write a program that prompts the user to enter a series of numbers and finds the maximum among them using a

for loop.

#13. Create a program that checks if a given number is prime or not using a for loop.

#14. Write a program that generates a random number between 1 and 100 and allows the user to guess it. Provide

appropriate feedback and keep asking until the correct guess is made using a do-while loop.

#15. Create a program that prints the ASCII values of all uppercase letters from A to Z using a for loop.

#16. Create a Dart function that calculates the area of a rectangle given its length and width, and returns the result.

#17. Write a Dart function that converts a temperature in Celsius to Fahrenheit and returns the result.

#18. Create a Dart function that checks if a given string is a palindrome and returns a Boolean value.

#19. Write a Dart function that calculates the sum of all numbers in a list and returns the result.

#20. Create a Dart function that counts the number of vowels in a given string and returns the count.

#21. Create a Dart program that shows the difference between local and global variable.

#22. Create a Dart program that demonstrates the usage of a local variable inside a loop.

#23. Create a Dart program that demonstrates the scope of local variable.

#24. Create a Dart program that demonstrates the shadowing of local variables.

#25. Create a Dart program that uses an anonymous function to find the sum of two numbers.

#26. Create a Dart program that uses an anonymous function to find the maximum number in a list.

#27. Create a Dart program that uses an arrow function to calculate the area of a rectangle.

#28. Create a Dart program that uses an arrow function to calculate the sum of a list of a numbers.

#29. Create a Dart program that uses an arrow function to calculate the square root of a number.

#30. Create a Dart program that creates a map representing a person with keys “name”, “age”, and “city”. Print the

values of the map.

#31. Write a Dart program that removes an element from a list using the ‘remove’ method and prints the updated

list.

#32. Write a Dart program that checks if an element exists in a set using the ‘contains’ method and prints the result.

#33. Write a Dart program that retrieves all keys from a map and prints them.

#34. Write a Dart program that creates a set of strings and prints the number of unique elements in the set.

Section 2 –

- Object Oriented Programming
- Object,Class, Methods,Access specifiers

- Constructor, named constructor, this, static

- Inheritance - single, multilevel, hierarchical,Multiple

- Runtime Polymorphism, Method overriding, super keyword
- Abstraction, Abstract Class, Interface

- Packages
- Exception Handling

- Multithreading, Isolets, Async, Concurrency.

*1. Write a Dart program that creates a class called ‘Person’ with properties ‘name’ and ‘age’. Implement

a default constructor and a named constructor.

*2. Write a Dart program that demonstrates the usage of static variables and methods in a class.

*3. Write a Dart program that demonstrates the concept of constructor chaining using the ‘this’ keyword.

*4. Write a Dart program that demonstrates the usage of default parameter values in a constructor.

*5. Write a Dart program that demonstrates the usage of the ‘assert’ keyword in a constructor.

*6. Write a Dart program that demonstrates single inheritance by creating a base class ‘Animal’ and a

derived class ‘Cat’.

*7. Write a Dart program that demonstrates hierarchical inheritance by creating a base class ‘Shape’ and

two derived classes ‘Rectangle’ and ‘Circle’.

*8. Write a Dart program that demonstrates method overriding in inheritance.

*9. Write a Dart program that demonstrates the concept of abstract classes and methods in inheritance.

*10.Write a Dart program that demonstrates the usage of mixins inheritance.

*11.Write a Dart program that demonstrates method overriding and runtime ploymorphism

*12.Write a Dart program that demonstrates the concept of runtime polumorphism by having a list of

animals and calling the ‘makeSound()’ method for each animal.

*13. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base

class and its subclasses.

*14. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base

class and its subclasses implementing an interface.

*15. Write a Dart program that demonstrates method overriding and runtime polymorphism with a base

class and its subclasses having different parameterized constructors.

*16. Write a Dart program that demonstrate abstraction and abstract classes.

*17. Write a Dart program that demonstrate the concept of abstraction and abstract classes with abstract

methods.

*18. Write a Dart program that demonstrates abstraction and abstract classes with named constructors.

*19. Write a Dart program that demonstrates the usage of abstract classes and interfaces in a hierarchical

structure.

*20. Write a Dart program that demonstrates abstraction and abstract classes with static members.

*21. Write a Dart program that uses the ‘http’ package to make an HTTP GET request and fetch data

from a remote server.

*22. Write a Dart program that uses the ‘path’ package to manipulate file and directory paths.

*23. Write a Dart program that uses the ‘flutter_launcher_icons’ package to generate app launcher icons

for a flutter project.

*24. Write a Dart program that uses the ‘flutter_localizations’ package to add internationalization

support to a Flutter app.

*25. Write a Dart program that uses the ‘connectivity’ package to check the internet connectivity status in

a Flutter app.

*26. Write a Dart program that demonstrates the use of try-catch blocks to handle a specific exception.

*27. Write a Dart program that uses the ‘on’ keyword to catch specific exceptions.

*28. Write a Dart program that uses the ‘finally’ block to perform cleanup operations.

*29. Write a Dart program that demonstrates the use of the ‘finally’ block with a return statement.

*30. Write a Dart program that demonstrates the use of stack traces to debug exceptions.

*31. Write a Dart program that uses the ‘async’ and ‘await’ keywords to perform an asynchronous

operation.

*32. Write a Dart program that uses isolates to perform computationally intensive tasks in parallel.

*33. Write a Dart program that uses the ‘Stream’ class to handle a stream of data asynchronously.

*34. Write a Dart program that uses the ‘await for’ loop to iterate over a stream of data asynchronously.

*35. Write a Dart program that uses the ‘StreamTransformer’ class to perform and filter a stream of

data.

#1. Create a Dart program that uses the ‘this’ keyword to refer to the current instance of a class.

#2. Create a Dart program that initialize an object using a static factory method.

#3. Create a Dart program that uses a private constructor to restrict the instantiation of a class.

#4. Create a Dart program that demonstrates the usage of constant constructors.

#5. Create a Dart program that demonstrates the usage of the ‘required’ keyword in a constructor.

#6. Create a Dart program that demonstrates multilevel inheritance by creating a base class ‘Animal’ an

intermediate class ‘Mammal’ and a derived class ‘Cat’.

#7. Create a Dart program that demonstrates multiple inheritance using interfaces by creating two classes

‘Flyer’ and ‘Swimmer’ implementing the interface ‘Animal’.

#8. Create a Dart program that demonstrates the usage of the ‘super’ keyword to call the base class

method.

#9. Create a Dart program that demonstrates the usage of the ‘is’ and ‘as’ keywords for type checking and

type casting in inheritance.

#10. Create a Dart program that demonstrates the usage of abstract classes and multiple inheritance using

interfaces.

#11. Create a Dart program that demonstrates the usage of the ‘super’ keyword to call the base class

method.

#12. Create a Dart program that demonstrates method overriding and runtime polymorphism with a

parameterized method.

#13. Create a Dart program that demonstrates the usage of the ‘super’ keyword with parameters in a

method override.

#14. Create a Dart program that demonstrates runtime polymorphism with a base class and its subclasses

implementing multiple interfaces.

#15. Create a Dart program that demonstrates the usage of the ‘super’ keyword with named constructors

in method overriding.

#16. Create a Dart program that demonstrate abstraction and interfaces.

#17. Create a Dart program that demonstrate abstraction and interfaces with multiple inheritance.

#18. Create a Dart program that demonstrates abstraction and interfaces with default implementations.

#19. Create a Dart program that demonstrates abstraction and interfaces with getters and setters.

#20. Create a Dart program that demonstrates abstraction and interfaces with private members.

#21. Create a Dart program that uses the ‘int1’ package to format a date and time according to a specific

locale.

#22. Create a Dart program that uses the ‘shared_preferences’ package to persist data locally on the

device.

#23. Create a Dart program that uses the ‘firebase_core’ package to initialize Firebase in a Flutter project.

#24. Create a Dart program that uses the ‘flutter_svg’ package to display SVG images in a Flutter app.

#25. Create a Dart program that uses the ‘sqflite’ package to perform SQLite database operation in a

Flutter app.

#26. Create a Dart program that uses try-catch-finally blocks to handle exceptions and ensure cleanup of

resources.

#27. Create a Dart program that demonstrates the use of the ‘rethrow’ keyword to rethrow an exception.

#28. Create a Dart program that demonstrates the use of custom exceptions.

#29. Create a Dart program that uses the ‘on’ keyword to catch multiple exceptions.

#30. Create a Dart program that uses the ‘assert’ function to validate inputs and detect logical errors.

#31. Create a Dart program that uses the ‘Future’ class to handle a long-running computation

asynchronously.

#32. Create a Dart program that demonstrates the use of ‘Future.wait’ to perform multiple asynchronous

operations concurrently.

#33. Create a Dart program that demonstrates the use of ‘StreamController’ to create and control a

stream of data.

#34. Create a Dart program that demonstrates the use of ‘Completer’ to handle a future result

asynchronously.

Section 3 – Flutter App Development – (Basic UI)

- Intro to Mobile UI & Mobile Programming(Backend)
- Flutter Architecture

- Intro to widgets(stateless & statefull)
- Intro to layouts,types(Widget supporting a single child,Widget supporting a multiple child)

- Material Widgets(TextField,ButtonBar,Checkbox) with

properites(Height,Width,padding,etc...)

- Material Widgets (ListTile,FloatingActionButton,FlatButton,IconButton,etc..)
- Async,await

- Gestures (Touch based device)
- Animation, Menu, Gallery, Camera

- Navigaton & Routing

- state Management (Like login,SignUp,etc...)

*1. Create a Dart program that displays a simple mobile UI with buttons and text fields.

*2. Implement a Dart program that retrieves data from a remote server using HTTP requests and displays

it in a mobile app.

*3. Create a Dart program that uses local storage to store and retrieve data persistently in a mobile app.

*4. Implement a Dart program that communicates with a RESTful API to fetch and display data in a

mobile app.

*5. Create a Dart program that implements a real-time chat functionality using WebSocket communication

in a mobile app.

*6. Implement the BLOC (Business Logic Component) pattern in Flutter to manage the state of a simple

counter app.

*7. Develop a Flutter app that uses the MVVM (Model-View-ViewModel) architecture to separate the

business logic and presentation logic.

*8. Implement the Clean Architecture in a Flutter app by separating the app into layers and defining clear

boundaries between the presentation layer, domain layer, and data layer.

*9. Develop a Flutter app that follow the Flutter Modular architecture and uses modules to organize the

app into smaller, reusable components.

*10. Implement the MVP (Model-View-Presenter) architecture in a Flutter app, separating the logic of the

app into distinct layers and improving testability.

*11. Create a Flutter app with a stateless widget that displays a static text message.

*12. Build a Flutter app with a stateful widget that displays a list of items fetched from an API.

*13. Create a Flutter app with a stateless widget that displays a random quote every time the screen is

refreshed.

*14. Build a Flutter app with a stateful widget that fetches data from an API periodically and displays it on

the screen.

*15. Create a Flutter app with a stateful widget that validates user input in a form and displays appropriate

error message.

*16. Create a Flutter app with a ‘Container’ widget that contains a single child widget and applies custom

styling properties like color and padding.

*17. Build a Flutter app with a ‘Column’ widget that displays multiple child widgets vertically.

*18. Create a Flutter app with a ‘ListView’ widget that displays a scrollable list of child widgets.

*19. Build a Flutter app with a ‘Wrap’ widget that arranges multiple child widgets to the next line when

there’s not enough horizontal space.

*20. Create a Flutter app with a ‘Card’ widget that displays multiple child widgets within a

*21. Create a Flutter app with a ‘TextField’ widget that allows the user to input text and displays the

entered text on a button press.

*22. Build a Flutter app with a ‘Checkbox’ widget that allows the user to toggle a value and displays the

current state.

*23. Create a Flutter app with a ‘ButtonBar’ widget that has a specified height, width, and padding.

*24. Develop a Flutter app with a ‘Scaffold’ widget that displays an ‘AppBar’ and a simple body.

*25. Build a Flutter app with a ‘TabBar’ and ‘TabBarView’ widget that displays different content based

on the selected tab.

*26. Create a Flutter app with a ‘BottomNavigationBar’ that includes badges on the icons.

*27. Create a Flutter app with a ‘ListTile’ widget that displays a title and subtitle.

*28. Build a Flutter app with a ‘FlatButton’ that changes its color when pressed.

*29. Create a Flutter app with a ‘RaisedButton’ that shows a snackbar when pressed.

*30. Create a Dart function that simulates an asynchronous task using ‘async’ and ‘await’.

*31. Build a Dart function that reads a file asynchronously using ‘async’ and ‘await’.

*32. Create a Dart function that performs an asynchronously operation with error handling using ‘try-

catch’ and ‘async’/’await’,

*33. Implement a Dart function that executes a series of asynchronous tasks sequentially using ‘async’

and ‘await’.

*34. Create a Dart function that performs an asynchronous task with a timeout using ‘async’ and ‘await’.

*35. Create a Flutter app that detects a tap gesture on a specific widget and performs an action.

*36. Build a Flutter app that detects a swipe gesture in different directions and displays the direction in a

text widget.

*37. Create a Flutter app that detects a pinch gesture and scales an image widget.

*38. Build a Flutter app that defects a scale gesture and zooms in/out an image.

*39. Create a Flutter app that detects a force press gesture and displays the pressure level.

*40. Create a Flutter app with a bouncing animation effect.

*41. Create a Flutter app that displays a gallery of images.

*42. Implement a Flutter app with an animated menu.

*43. Develop a Flutter app with a circular menu.

*44. Create a Flutter app with a gallery using a PageView.

*45. Create a Flutter app with two screens and navigate between them.

*46. Create a Flutter app with a bottom navigation bar.

*47. Create a Flutter app with a drawer menu.

*48. Develop a Flutter app with a bottom navigation bar and different screens for each tab.

*49. Implement a Flutter app with a named route and passing arguments.

*50. Implement a simple login form with state management.

*51. Implement a signup form using BLoC pattern for state management.

*52. Implement a theme toggle using Riverpod for state management.

*53. Implement a timer app using Provider for state management.

*54. Implement a user profile screen using BLoC pattern for state management.

#1. Develop a Dart program that retrieves data from a remote server using HTTP requests and displays it

in a mobile app.

#2. Build a Dart program that uses geolocation services to fetch the current location of a user’s mobile

device.

#3. Develop a Dart program that integrates with the device’s camera to capture photos and display them in

a mobile app.

#4. Build a Dart program that utilize Firebase Cloud Messaging to send push notifications to a mobile

device.

#5. Develop a Dart program that utilizes the device’s accelerometer to detect motion and perform actions

in a mobile app.

#6. Create a Flutter app that follows the Provider pattern to manage global state and demonstrate how to

access and update the state from different widgets.

#7. Build a Flutter app that implements the redux architecture for state management and demonstrates how

to dispatch actions and handle state changes.

#8. Create a flutter app that uses the Repository pattern to handle data access and provides an abstraction

layer between the data sources and the rest of the app.

#9. Build a Flutter app that uses the Provider and Riverpod libraries to implement dependency injection

and manage dependencies between different parts of the app.

#10. Create a flutter app that uses the Flutter Hooks package to implement a functional programming style

and manage state in a more concise and declarative way.

#11. Develop a Flutter app with a stateful widget that increments a counter when a button is pressed.

#12. Implement a Flutter app with a stateful widget that toggles the visibility of a widget when a button is

pressed.

#13. Develop a Flutter app with a stateful widget that fetches data from an API periodically and displays it

on the screen.

#14. Implement a Flutter app with a stateful widget that loads and displays images from the internet.

#15. Develop a Flutter app with a stateful widget that uses a timer to update the UI periodically.

#16. Develop a Flutter app with a ‘Row’ widget that displays multiple child widgets horizontally.

#17. Implement a Flutter app with a ‘Stack’ widget that overlays multiple child widgets on top of each

other.

#18. Develop a Flutter app with a ‘GridView’ widget that arranges multiple child widgets in a grid layout.

#19. Implement a Flutter app with an ‘Expanded’ widget that distributes available space evenly among

multiple child widgets.

#20. Develop a Flutter app with a ‘Table’ widget that arranges multiple child widgets in a tabular layout

with rows and columns.

#21. Develop a Flutter app with a ‘ButtonBar’ widget that displays a row of buttons with custom padding

and alignment.

#22. Implement a Flutter app with a ‘TextField’ widget that has a specified height, width, and padding.

#23. Develop a Flutter app with a ‘Checkbox’ widget that has a specified height, width, and padding.

#24. Develop a Flutter app with a ‘BottomNavigateBar’ widget that switches between different screens.

#25. Implement a Flutter app with a ‘Scaffold’ widget that includes a ‘FloatingActionButton’.

#26. Develop a Flutter app with a ‘TopBar’ and ‘TabBarView’ that includes custom colors and styling.

#27. Develop a Flutter app with a ‘FloatingActionButton’ that performs an action when pressed.

#28. Implement a Flutter app with an ‘IconButton’ that shows a dialog when pressed.

#29. Develop a Flutter app with a ‘Card’ widget that displays an image and some text.

#30. Develop a Dart program that fetches data from an API using ‘async’ and ‘await’.

#31. Implement a Dart program that performs multiple asynchronous tasks concurrently using ‘async’ and

‘await’.

#32. Develop a Dart program that performs a time-consuming calculation asynchronously using ‘async’

and ‘await’.

#33. Develop a Dart program that fetches data from multiple APIs concurrently using ‘async’ and ‘await’.

#34. Implements a Dart program that performs an asynchronous operation with progress updates using

‘Stream’ and ‘async’/’await’.

#35. Develop a Flutter app that detects a long press gesture and displays a dialog.

#36. Implement a Flutter app that detects a double tap gesture and changes the color of a widget.

#37. Develop a Flutter app that detects a vertical drag gesture and scrolls list.

#38. Implement a Flutter app that defects a long press move gesture and drags an object on the screen.

#39. Develop a Flutter app that detects a rotate gesture and rotates an image.

#40. Implement a Flutter app with a dropdown menu.

#41. Develop a Flutter app that accesses the camera and captures an image.

#42. Create a Flutter app with a sliding menu.

#43. Implement a Flutter app with a tab bar.

#44. Develop a Flutter app with a camera preview.

#45. Implement a Flutter app with named routes and passing data between screens.

#46. Develop a Flutter app with a tab-based navigation.

#47. Implement a Flutter app with a login screen and navigate to the home screen on successful login.

#48. Create a Flutter app with a bottom navigation bar and persistent state between screens.

#49. Create a Flutter app with a drawer menu and navigate to different screens.

#50. Implement a counter app using Provider for state management.

#51. Implement a shopping cart using MobX for state management.

#52.Implement a todo list using GetX for state management.

#53. Implement a weather app using Riverpod for state management.

#54. Implement a favorites list using MobX for state management.

Section 4 – Flutter App Development – Advanced

- Create SQlite Based Project

- API Using Postman (GET,POST,PUT,DELETE,etc..)
- Rest API Use in Application

- OTP Verification

- Login with Gmail
- Firebase Remote Notification

- Payment Integration

*1. Create a Flutter application that stores and retrieves user information (name, email, age) in a SQLite

database.

*2. Use the ‘http’ package in Dart to make a GET request to a public API (e.g., weather API) and display

the response data in your application.

*3. Build a Flutter app that consumes a Restful API to fetch and display a list of products.

*4. Create a Dart program that generates a random OTP and sends it to a user’s phone number or email

using an external service (e.g., Twilio, SendGrid).

*5. Integrate the Google Sign-In API in your Flutter app to allow users to log in using their Gmail

accounts.

*6. Set up Firebase Cloud Messaging (FCM) in your Flutter app to send remote push notifications to the

device.

*7. Integrate a payment gateway SDK (such as Stripe or PayPal) into your Dart application to enable

online payment processing.

*8. Implement JWT (JSON Web Tokens) authentication in your Dart app to secure your Restful API

endpoints.

*9. Create a Flutter app with a login/register screen using Firebase Authentication.

*10. Use Firebase Real-time Database in your Dart app to synchronize data across multiple devices in real

– time.

#1. Implement CRUD (Create, Read, Update, and Delete) operations on the user data using SQLite.

#2. Implement a POST request to send data to a server (e.g., user registration) using the ‘http’ package.

#3. Implement pagination functionality in your app by making subsequent requests to retrieve additional

data from the API.

#4. Implement OTP verification by comparing the entered OTP with the generated OTP in your Dart

application.

#5. Retrieve the user’s basic profile information (name, email, profile picture) after successful

authentication.

#6. Implement handling of incoming push notifications and display them as system notifications or within

the app.

#7. Implement a checkout flow where users can enter payment details and complete a purchase using the

integrated payment gateway.

#8. Validate and decode JWT tokens received from the client to authenticate and authorize requests.

#9. Implement different user roles (e.g. admin, regular user) and restrict access to certain features based on

the user’s role.

#10. Implement real-time chat functionality where messages sent from one device are instantly visible on
other devices.

