
                                                                                                                                                                   www.codebetter.in 

                                                                                                                                                                   +91 88230 75444 

                                                                                                                                                   +91 9993928766 

  

Section 1 – Array 

*1.   Write a program to find the sum of all elements in an array. 

*2.   Write a program to find the largest and smallest elements in an array. 

*3.   Write a program to remove duplicates from an array. 
*4.    Write a program to reverse an array in-place. 

*5.    Write a program to check if an array is sorted in ascending order. 

 

#1.   Write a program to find the second largest element in an array. 
#2.   Write a program to find the common elements between two arrays. 

#3.   Write a program to merge two sorted arrays into a single sorted array. 

#4.   Write a program to rotate an array by a given number of positions. 

#5.   Write a program to find the missing number in a given array of integers. 

 

Section 2 – Two-Dimensional Array 

*1.   Write a program to find the sum of all elements in a two-dimensional array. 

*2.   Write a program to calculate the transpose of a matrix. 

*3.   Write a program to multiply two matrices. 
*4.    Write a program to find the largest element in each row of a matrix. 

*5.    Write a program to check if a given matrix is symmetric. 

 

#1.   Write a program to find the saddle point in a matrix. 

#2.   Write a program to sort the elements of a matrix in ascending order. 

#3.   Write a program to find the sum of the diagonals in a matrix. 

#4.   Write a program to find the number of rows and columns in a matrix. 

#5.   Write a program to check if two matrices are equal. 

 

Section 3 – Stack 

*1.   Write a program to implement a stack using an array. 

*2.   Write a program to reverse a string using a stack. 

*3.   Write a program to check if a given expression has balanced parentheses using a stack. 
*4.    Write a program to convert an infix expression to postfix using a stack. 

*5.    Write a program to evaluate a postfix expression using a stack. 

 

#1.   Write a program to implement a stack using a linked list. 

#2.   Write a program to reverse a linked list using a stack. 

#3.   Write a program to convert a decimal number to binary using a stack. 

#4.   Write a program to check if a given string is a palindrome using a stack. 

#5.   Write a program to implement the Tower of Hanoi problem using a stack. 

 

Section 4 – Queue 

*1.   Write a program to implement a queue using an array. 

*2.   Write a program to implement a circular queue using an array. 

 

 

401, Shekhar Central, Palasia Square, Indore, MP - 452001 

 Data Structure 

http://www.codebetter.in/


*3.   Write a program to reverse the elements of a queue. 
*4.    Write a program to implement a queue using a linked list. 

*5.    Write a program to implement a priority queue using a heap. 

 

#1.   Write a program to simulate a printer queue using a queue. 

#2.   Write a program to implement a double-ended queue (deque) using a doubly linked list. 

#3.   Write a program to implement a circular buffer using a queue. 

#4.   Write a program to check if a given string is a palindrome using a queue. 

#5.   Write a program to generate the binary numbers from 1 to n using a queue. 

 

Section 5 – LinkedList – Single, Double 

*1.   Write a program to create and display a singly linked list. 

*2.   Write a program to insert an element at the beginning of a singly linked list. 

*3.   Write a program to insert an element at the end of a singly linked list. 
*4.    Write a program to delete the first occurrence of an element in a singly linked list. 

*5.    Write a program to reverse a singly linked list. 

 

#1.   Write a program to find the middle element of a singly linked list. 

#2.   Write a program to create and display a doubly linked list. 

#3.   Write a program to insert an element at the beginning of a doubly linked list. 

#4.   Write a program to insert an element at the end of a doubly linked list. 

#5.   Write a program to delete the last occurrence of an element in a doubly linked list. 

 

Section 6 – Recursion 

*1.   Write a program to calculate the factorial of a number using recursion. 

*2.   Write a program to find the nth Fibonacci number using recursion. 

*3.   Write a program to calculate the sum of digits of a number using recursion. 
*4.    Write a program to find the GCD of two numbers using recursion. 

*5.    Write a program to calculate the power of a number using recursion. 

 

#1.   Write a program to reverse a string using recursion. 

#2.   Write a program to generate all possible subsets of a set using recursion. 

#3.   Write a program to find the number of ways to climb n stairs using recursion. 

#4.   Write a program to solve the Tower of Hanoi problem using recursion. 

#5.   Write a program to check if a string is a palindrome using recursion. 

 

Section 7 – Sequential, Binary 

*1.   Write a program to search for an element in an array using sequential search. 

*2.   Write a program to search for an element in a sorted array using binary search. 

*3.   Write a program to find the first and last occurrences of a number in an array using binary search. 
*4.    Write a program to search for an element in a two-dimensional array using binary search. 

*5.    Write a program to search for a substring in a string using sequential search. 

 

#1.   Write a program to count the occurrences of a word in a given text using sequential search. 

#2.   Write a program to search for a file in a directory using sequential search. 

#3.   Write a program to find the maximum and minimum elements in an array using sequential search. 

#4.   Write a program to search for a pattern in a DNA sequence using sequential search. 

#5.   Write a program to search for a given key in a binary search tree. 

 

Section 8 – Sorting – Bubble, Merge, Heap, Selection 

*1.   Write a program to sort an array of integers using bubble sort. 



*2.   Write a program to sort an array of integers using merge sort. 

*3.   Write a program to sort an array of integers using heap sort.  
*4.    Write a program to sort an array of integers using selection sort. 

*5.    Write a program to sort an array of strings using bubble sort. 

 

#1.   Write a program to sort an array of strings using merge sort.  

#2.   Write a program to sort an array of strings using heap sort. 

#3.   Write a program to sort an array of strings using selection sort. 

#4.  Write a program to sort a two-dimensional array of integers using bubble sort. 

#5.   Write a program to sort a two-dimensional array of integers using merge sort. 

 

Section 9 – Backtracking Algorithm 

*1.   Write a program to solve the N-Queens problem using backtracking. 

*2.   Write a program to generate all permutations of a string using backtracking. 

 

#1.   Write a program to solve the Sudoku puzzle using backtracking. 

#2.   Write a program to solve the Knapsack problem using backtracking. 

#3.   Write a program to generate all possible combinations of a set of numbers using backtracking. 

 

Section 10 – Greedy Algorithm 

*1.   Write a program to solve the Fractional Knapsack problem using a greedy algorithm. 

*2.   Write a program to solve the Activity Selection problem using a greedy algorithm. 

 

#1.   Write a program to find the minimum number of coins needed to make a change using a greedy 

algorithm. 

#2.   Write a program to solve the Huffman coding problem using a greedy algorithm. 

#3.   Write a program to solve the Job Scheduling problem using a greedy algorithm. 

 

Section 11 – Heap 

*1.   Write a program to build a max heap from an array of integers. 

*2.   Write a program to build a min heap from an array of integers. 

*3.   Write a program to insert an element into a max heap. 

*4.   Write a program to delete the root element from a max heap. 

*5.   Write a program to extract the minimum element from a min heap. 

 

#1.   Write a program to merge two max heaps into a single max heap. 

#2.   Write a program to check if a binary tree is a max heap.  

#3.   Write a program to find the kth largest element in an array using a min heap. 

#4.   Write a program to sort an array of integers using a heap sort algorithm. 

#5.   Write a program to implement a priority queue using a heap data structure. 

 

Section 12 – Tree – Binary Tree, AVL Tree, Balanced 

*1.   Write a program to construct a binary tree from a given array representation and perform an inorder 

traversal to display its elements. 

*2.   Write a program to check if two binary trees are identical, i.e., they have the same structure and same 

values at corresponding positions. 

*3.   Write a program to find the height of a binary tree. 

*4.   Write a program to perform a rotation in an AVL tree, either left rotation or right rotation. 

*5.   Implement a program to delete a node from an AVL tree while maintaining balance. 



 

*6.    Write a program to check if a given binary tree is height-balanced or not. 

*7.    Write a program to find the diameter of a binary tree, which is the longest path between any two       

leaf nodes. 

*8.    Write a program to check if a binary tree is a perfect binary tree. 

 

#1.   Implement a program to find the maximum value in a binary tree iteratively, without using recursion. 

#2.   Implement a program to count the number of leaf nodes in a binary tree.  

#3.   Implement an AVL tree and write a program to perform an insertion operation, ensuring the tree 

remains balanced. 

#4.   Write a program to sort an array of integers using a heap sort algorithm. 

#5.   Write a program to find the minimum value in an AVL tree. 

#6.    Implement a program to convert an AVL tree into a balanced binary search tree. 

#7.    Implement a program to convert an unbalanced binary tree into a balanced binary tree. 

#8.    Implement a program to perform a right rotation on an unbalanced binary tree to make it balanced. 

 

Section 13 – Graph – SPF, Dijkstra Algo 

*1.   Implement Dijkstra's algorithm to find the shortest path between two vertices in a weighted directed 

graph. 

*2.   Implement Kruskal's algorithm to find the minimum spanning tree (MST) of a weighted undirected 

graph. 

*3.   Implement the Floyd-Warshall algorithm to find the shortest paths between all pairs of vertices in a 

weighted directed graph. 

 

#1.   Write a program to find the minimum spanning tree (MST) of a weighted undirected graph using 

Prim's algorithm. 

#2.   Write a program to detect cycles in a directed graph using depth-first search (DFS).  

 

Section 14 – Dynamic Programming 

*1.   Write a program to solve the Fibonacci sequence using dynamic programming. 

*2.   Write a program to solve the 0/1 knapsack problem using dynamic programming. 

*3.   Write a program to calculate the nth term of the Pascal's triangle using dynamic programming. 

 

#1.   Implement a program to find the longest common subsequence (LCS) of two given strings using 

dynamic programming. 

#2.   Implement the coin change problem using dynamic programming to find the minimum number of 

coins required to make a given sum.  

 

 

 

 

 

 
 

 

 
 

 



 

   

 

 


